SECURE MULTIPARTY COMPUTING FOR MEDICAL RECORD LINKAGE

JASON N. DOCTOR1, JAIDEEP VAIDYA2, XIAOQIAN JIANG3, SHUANG WANG3, LISA SCHILLING4, TOAN ONG4, MICHAEL E. MATHENY5,6, LUCILA OHNO-MACHADO3 AND DANIELLA MEEKER7

1Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, CA 90033
2Management Science & Information Systems Department, Rutgers University, Newark, NJ 07102
3Health System Department of Biomedical Informatics, UC San Diego, La Jolla, CA, 92093
4Department of Medicine, University of Colorado, Anschutz Medical Campus, CO, 80045
5Geriatric Research Education and Clinical Care Service, Tennessee Valley Healthcare System VA, Nashville, TN 37212
6Departments of Biomedical Informatics, Medicine, and Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37235
7Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
OVERVIEW

• Ways in which data are stored
• Secure multiparty computation: What is it?
• Set Intersection Method for Secure Computation
• Experiment
• Discussion
• Future Directions and New Applications
THE OLD WAY: BRING DATA TO A CENTRAL DATABASE WHERE COMPUTATIONS ARE DONE

Data Sources

- Hospital records
- Clinical records
- Patient self-reported data

Research team
THE NEW WAY: BRING THE COMPUTATION TO THE DATA
"The secret to strong security: less reliance on secrets."

- Whitfield Diffie
SECURE MULTI-PARTY COMPUTATION: PUBLIC FUNCTION WITH PRIVATE INPUTS

Clinical Site (Alice)

Do you have 7012?

Yes

Clinical Site (Bob)

2290387...4238749

8973984...4566453
HOMOMORPHIC ENCRYPTION

\[
a + b = \varphi(a) \varphi(b)
\]
SET INTERSECTION (LIN & TZENG, 2005) LIKE “BATTLESHIP”

- ALICE’S NUMBER IS REPRESENTED BY A PARTICULAR CONFIGURATION OF SHIPS
- BOB’S NUMBER IS REPRESENTED BY ANOTHER CONFIGURATION OF SHIPS
- ALICE’S SHIPS ARE EACH ENCRYPTED ZEROS
- OPEN WATER IS REPRESENTED BY RANDOM NUMBERS
- BOB MULTIPLIES THE ENCRYPTED NUMBERS ALICE GIVES HIM THAT CORRESPOND TO HIS SHIP LOCATION AND RETURN THESE TO ALICE
- SHE DECRYPTS, IF SHE GETS A “0” THEY HAVE A MATCHING SHIP AND ALICE’S NUMBER IS BIGGER THAN BOB’S
SET INTERSECTION EQUIVALENCE

• Matching has more applications
 • Buying and selling prices in market transactions
 • Authentication in Communication
 • Medical Record Linkage

• Developing an application would have many uses
OUR MAIN RESULT

- If Bob returns messages on Z (target identifier) and Z – 1, then we can match identifiers.

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(null set):</td>
<td>(nonnull empty on both):</td>
</tr>
<tr>
<td>(Y < Z); (Y < Z -1)</td>
<td>(Y > Z); (Y > Z -1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(null set):</td>
<td>(nonnull empty on 1):</td>
</tr>
<tr>
<td>(Y < Z); (Y = Z -1)</td>
<td>(Y = Z); (Y > Z -1)</td>
</tr>
</tbody>
</table>
EXPERIMENT
DATA SET

• Data represent 20,000 cases, 10,000 at each of two clinical sites (6,000 of which match)
• Metro Community Provider Network in Denver, Colorado between January 1, 2007 and January 31, 2013.
COMPUTING ENVIRONMENT

• The algorithm was carried out on a Apple, inc. MacIntosh computer with a 2.4 Ghz Intel Core i5 processor and 8 GB (1699 MHz DDR3) of memory (My Laptop).

• Software was written in the statistical computing language R, Version 3.3.0, released May 3rd, 2016 (Ihaka, Ross, & Robert, 1996) and utilized the package HomomorpheR for additive homomorphic encryption.
SORTING

We utilized a sorting algorithm to reduce the number of necessary comparisons from $a \times b$ to $a + b$.
RESULTS

- It took 63 minutes for Alice to encrypt her data.
- Alice’s single vector of encrypted IDs required 462.5 MB of space (about 46.3 GB per million lives).
- Bob’s dynamic multiplication of messages, Alice’s decryption of Bob’s Messages took 6 hours, 32 minutes and 27 seconds.
<table>
<thead>
<tr>
<th>Time</th>
<th>Alice encryptions</th>
<th>Bob’s Message Generation</th>
<th>Decryption by Alice</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>00:00:04</td>
<td>00:09:57</td>
<td>00:00:05</td>
</tr>
<tr>
<td>System</td>
<td>00:00:02</td>
<td>00:00:13</td>
<td>00:00:02</td>
</tr>
<tr>
<td>Elapsed</td>
<td>00:00:05</td>
<td>00:11:06</td>
<td>00:00:05</td>
</tr>
</tbody>
</table>
DISCUSSION

• Secure Multiparty Record Linkage is Feasible
• Alice’s encryptions can be done offline which adds efficiency
• Methods for generating global identifiers are well-known (Kho et al. 2015)
• Two-party example can be extended easily to multiple parties
FUTURE DIRECTIONS AND NEW APPLICATIONS

• Apply this method across a distributed data network
• Clinical medical record sharing peer-to-peer (through certification matching)
• Authentication in secure communication between clinicians (e.g., Secure texting)
• Genetic marker matching for the protection of personal genetic data
ACKNOWLEDGMENTS

• This research funded under the Patient Scalable National Network for Effectiveness Research (pSCANNER) supported by the Patient Centered Outcomes Research Institute (PCORI), Contract CDRN-1306-04819 (PI: Dr. Ohno-Machado).